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In this paper we consider the numerical solution of the one-dimen-
sional, unsteady heat conduction equation in which Dirichlet bound-
ary canditions are specified at two space locations and the tempera-
ture .distribution at a particular time, say Ty, is given. The
temperature distribution for all times, t < T, is now required and
this backward heat conduction problem is a well-known improperly
posed problem. In order to solve this problem the minimal energy
technique has been introduced in order to modify the boundary
element method and this results in a stable approximation to the
solution and the accuracy of the numerical resufts are very encoura-
g'mg. © 1955 Academic Press, Inc.

I. INFTRODUCTION

The aim of this paper is to investigate an improperly posed
problem that arises in one-dimensional, unsteady heat transfer,
but before proceeding we recall what is meant by an improperly
posed problem in partial differential equations. One may regard
a problem as being well posed (or properly posed} if a unique
solution exists which depends continuously on the data; other-
wise it is an improperly posed problem. Of course. we must
state precisely in what class the solution is to lie as well as the
measure of continnous dependence. It should be emphasized
that in discussing the continuous dependence on the data we
must consider the initial and boundary conditions, the pre-
scribed values of the operator, the coefficients ol the terms in the
governing equalion and the geometry of the solution domain,

The systematic study of classes of improperly posed prob-
lems for partial differemial equations is of rather recent origin,
although consideration was afready being given to such prob-
lems in the middle and latter half’ of the nineteenth century.
Hadamard {6] studied the Cauchy problem for the Laplace
cquation and he clearly defined what is meant by an improperly
poscd problem and illustrated by examples and counterexam-
ples the difficulties involved. Hadamard further pointed out
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that it is impossible to solve an improperly posed problem by
the classteal theory ol partial differentind equations and he
derived the necessary and sufficient conditions for the global
existence of solutions ol the Cauchy problem for the Laplace
equation. Unfortunately, it is impossible to verify, in general,
whether the necessary conditions are or are not satisfied. Up
to now, a number of procedures have been advanced for the
solution of improperly posed problems. Lavrentiev [10] dis-
cussed bounded solutions of the Cauchy problem for the La-
place equation in a special two-dimensional domain such that
the Cauchy data is continuous. Whilst Payne [13, 14] obtained
sofutions of more general second-order elliptic equations. Then
Falk and Monk [3] investigaled error estimates of a regulariza-
tion method {or approximating the Cauchy problem for the
Poisson equation on a rectangle. Han [7] studied an energy-
bounded solution of the second-order elliptic equations and
proposed a minimal energy method for getting its numerical
approximation by the finite element method.

An important class of improperly posed problems arises in
the field of inverse heat conduction problems and it has been
found that these problems are extremely sensitive to measure-
ment errors; see, for example, Beck et al. [1]. The unsteady
heat conduction problem is generally described by a parabolic
eqguation and if initial and boundary data are specified then this,
in general, feads o a well-posed problem, since it s possible
(o obtain the temperature distribution at any later time uniquely.
However, in many physical situations it is not always possibic
Lo specify the initial data or the boundary condition at all points
on the boundary of region. For example, in practice it may be
possible (o determine the temperature distribution at a particular
time, say 1 = T, > 0, and to specify either the temperature, u,
or the heat flux, du/dn, on the boundary of the region. From
this data the question arises as 10 whether the temperature
distribution at any earlier time, ¢ << T, can be obtained. In
general, no solution which satisfies this equation and the bound-
ary condilions exists. Further, even if a solution did exist it
would not be dependent continuously on the boundary and
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initial data; see Payne {5]. Therefore, this problem is an example
of an improperly posed problem and in order to solve this
problem classical numerical methods are impossible and a spe-
cial technique has to be employed; see Hadamard [0].

In order to solve inverse heat conduction problems which are
improperly posed a number of procedures have been developed.
Miller [ 12] described a least-squares scheme in order to investi-
gate the bounded solution of the backward parabolic probiems,
Tikhonov and Arsenin [16] have investigated unsteady heat
conduction problems in which there are insufficient boundary
conditions. They described the regularization method to reduce
the sensitivity of improperly posed problems to measurement
errors and the singular-value decomposition technique has also
been successfully applied to inverse heat transfer problem by
Mandrel [11]. Then Ingham et @l [8] introduced a minimal
energy scheme to modify the boundary element method (BEM)
in order to solve a problem in which there was insufficient
boundary data in order to determine the solution of the Laplace
equation, and an excellent approximate solution was obtained.
Further, Ingham and Yuan [9] investigated a steady state, non-
linear heat conduction equation in which there are some un-
known coefficients, but extra information was given at some
interior points of the solution domain. They have successfully
used the minimal energy technique, along with the BEM, to
determine those unknown coefficients. In this paper we extend
this minimal energy technique to solve the backward unsteady
heat conduction problem.

The time dependent heat conduction problem satisfies the
equation

aulx, 3t = Viulx, 1y (5, 1) € QX (0, @), (L)

where u(x, ¢) is the temperature. If the temperature, or heat
flux, is specified on the surface of the domain {1 and the initiai
temperature distribution is given, then Eq. (1.1) has to be solved,
subject to the conditions

ulx, )= dlx, 1) (x,0) € a0l X [0, ®)
reQ,

(1.2)
(1.3)

u(x, 0) = uy(x),
where @(x, 1) and wu{x) are prescribed functions. It is well
known that if ¢ and u, are sufficiently smooth then the problem
(1.1}—(1.3) has a unique and stable solution; see, for example,
Treves [17]. Such problems may easily be solved numerically
by using the finite element method, the finite difference method,
or the BEM., However, frequently in practice the temperature
distribution is prescribed at a particular time, t = T; > 0, and
it is required to find the temperature distribution, or heat flux
history, for any time ¢ < T;,. This is called the backward heat
conduction problem. This problem is wuch more difficuls o
solve than the forward heat conduction problem, because the
backward problem is improperly posed. In other words, the
difficulty is that the solution of the backward heat conduction
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problem does not continuously depend on the known boundary
and initial data.

For simplicity, in this paper we consider the one-dimensional
backward heat conduction preblem, namely,

oulor = dtulax? (x, € (0,1) X (0, T] 1.4
w0, 1) = (1) te1f0,T) (1.5)
u(l, 5y = (5 tefo, 1} (1.6)

ulx, Ty) = g(x) x €10, 11, (L.

where ¢y(f), & (2}, and g(x) are prescribed functions and the
valuve of Ty (=7T) i3 given. In order to obiain the numerical
solution of the problem (1.4)—(1.7) a constant BEM has been
employed and three mathematical models, namely, the direct
method, the least-squares method, and the minimal energy
method, have been developed. However, it has been found that
only the minimal energy technique gives accurate and stable
approximate solutions to the problem.

2. THE BOUNDARY ELEMENT METHOD

The crucial step in the application of the BEM is the transfor-
mation from the governing differential equation o an integral
representation and this is achieved by employing a fundamental
solution of the differential equations. It is well known that the
one-dimensional time-dependent fundamental solution of Eq.
(1.4) is of the form, see, for example, Brebbia [2],

- & f)z} He—m, (21)

NS SR P
F(X, f; f; 7) - {47',,({‘_, T)}UZ exp[ 4(1‘ - T)

where H(7) is the Heaviside function which is included to
emphasize the fact that the fundamental solution is identically
zero for 7 > ¢. Using this fundamental solution then the differen-
t1al equation (1.4) may be transformed into the boundary inte-
gral equation

nCOu(x, ) = ju &'(& DF(x. 1; & 1| d7
- j; HEDF (1 €D dr (2.2)
+ j:) u VIF(x, 5 v, 0) dy,

where t € [0, T], ¢ = ¢py when £ = O and ¢p = ¢, when ¢ =
1, and

whenQ0<x <1
whenx=0,1
0 whenx & {0, 11 X[0,T]

n(x) =
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In practice analytical solutions of the integral equation (2.2)
is impossible and thus some form of numerical approximation
is necessary. If the time dimension is subdivided into N time
steps, the space interval [0, 1] into N, elements, and if we take
x on the boundary, at x = 0 orx = 1, then the integral equation
{2.2) becomes

1< .
Suniy=3 [ @& R i E Dlidr
J=1 1

i
_EF
j=1 i

tj
I
fi-

SEDF (1, T & Dy dr

1

(2.3)

Mo
+ 2 J‘f uo()’)F(xyfﬁ)’, 0) dya l= 1: ‘--1Ns
J=1 9 %

where ¢; is the midpoint of the segment [r,_,, #]. Furthermore,
if we write

Gy= [ Flatsgndn, =128, 24)

E;= J F'(x. 6§ ndr+ 8, i=1,.,2N, (2.5

FU:J'\C, F(Il,t”y, O)dy, i= 13'--, 2N1 (2‘6)
¥i-1

wherex, = 0fori=N,x;=1fori>N,and § =0 forj =
N, &= 1 forj > N. Then from the integral equation (2.3} we
obtain a linear system of equations

N,

N N o
E] Gyd;— O Eyl + 2, Ft; =0, i=1,._,2N, (2.7
i= =1 i=l

where ¢; and ¢; take the values of ¢ and ¢’ at the midpoint
of the segment {1, &} and uy takes the value of u, at the
midpoint of the segment [ y;_;, y;]. We should note that G;; =
E; = 0 when &, > «. The system of Eqs. (2.7) contains 2N
equations and 4N + N, variables. If either ¢ or ¢’ is specified
at each mesh point on the boundaries x = (0 and x = ] and the
initial condition #, is given on ¢ = 0 then the system of Eqgs.
{2.7) can be solved and the temperature distribution can be
determined at any point within the solution interval at any
particular value of the time ¢t € [0, T].

All the integrals that occur in expressions (2.4)—(2.6) are
calculated using Gaussian quadrature but it should be noted
that when ¢, = ¢ then the integrals (2.4) and (2.5} are singular.
However, these integrals may be calculated analytically as
follows:

Let 7; be the midpoint of the segment [¢,_, 1;]; then we have

Lx___,'f)_z] (2.8)

- _ ! _
Flx, 53 6,m) = {(an(f, — Dy exp [ 48— 1)
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(—1E—x

_(x— &Y
‘”‘p[ 4(:“.——7)]’ @9

where x = Oor 1, and £ = 0 or 1. Therefore F'(x, f;; x, 7) =
O and Fx, &, x, 7) = U[27Y{, — 7)*7]; then we obtain

Gi= [ FOofix Mdr= (G—nym™  (210)

E,= L F'(x,T;x, Ddr+ 211

-

1
2

Further, let o = 1/(f, — 7)'7? and thus d7 = —2do/o?; then

we obtain
Ewi= =" —A——exp| - —— | dr
R e R i RO
=5 F exp[—c¥d] do (2.12)
[ f .
=371 exp[— a4l do,
where &« = 1/(f; — #,.,)"2. On the other hand,
1 1 1
Girei = _J"H 2a'4(F — 7)"° =P [ A — T)] a
~ # [ o 2expl-ot41 dor
(2.13)

@

— __1_ * _ 2
=C ZN'QJ exp[—o¥/4] do
- _1_ “« 2
=C-3+ fo expl—a¥/4] do,
where C = ({f; — t,- )Y exp(—%(f, — t,_)). Similarly, we have

Eyi = (2.14)

-12- - jﬂ expl—o?/4] dor

and

1 a -
Gyrig= €~ 2 * fﬂ exp[—o*/4] do. (2.15)

It should be noted that in the calculation of the integrals
(2.4)~(2.6) the Gaussian quadrative can also be inaccurate when
t;is close to t;. However, a sufficiently large number of elements
have been taken, so that this error is not significant in all the
examples investigated in this paper.
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3. MATHEMATICAL MODELS

In order to use the BEM to solve the backward heat conduc-
tion problem (1.4)-(1.7) numerically the problem is first dis-
cretised and the linear system of Eqs. (2.7), which contains 2N
equations and 2N + N, unknown variables, is obtained. Thus
in order to solve this system of equations we must add further
M, equations and these are obtained using Eq. (1.7} for the
known values of u(x, ). Therefore, on using Eq. (2.2) we obtain

uCe, T) = [ 8/(& MFG. To: & Db dr

- [PaE PG T E0lkdr (D)

1
+ [ w5, Tos 3,0 dy,
where x; 1s the midpoint of the ith segment on t = T If we write

Gllf=J.E F(XisTD;fy T)de i= lv-"=NT! (32)

EI,.,.=j"' Fix, To: & mydr, i=1,., Ny, (3.3)
4-1

FIU=K“ Fx, To;v. Oy dy, i=1,..N;,  (34)
=1

then, from Eqg. (3.1), we obtain the Ny linear equations

W w Ny
-2. Glyg,; — }‘1 El;d! + 2‘{ Fliy =g, i=1,.,N;, (3.5)
i= i= Jj=

where the quantities g; take the value of g(x) at the midpoint
of the segment [ y,.,, ¥].

3.1. Direct Method

Taking Ny = Ny, then the systern of Egs. (3.5) provides N,
equations which when combined with the system of Eq. (2.7)
gives a new system of 2N + N, linear equations with 2N -+
Ny unknown variables. We may now solve directly the system
of Eqs. (2.7) and (3.5) to obtain ¢; (j = 1, 2, ..., 2¥) and uq;
{(j = 1,2, ., My). By inserting these values into Eq. (2.2) we
are able to obtain the function u(x, f) everywhere in [0, 1] X
{0, T]. However, it was found that the system of Egs. (2.7)
and (3.5) are ill-conditioned and hence no solution of the system
of equations is possible. This conclusion is as expected since
the problem (1.4)—(1.7) is improperly posed.

3.2. Least-Squares Method

Because the system of Egs. (2.7) and (3.5) are ill-conditioned
a least-squares technique was investigated. Further, in order to
obtain more information from the known data we may take
Ny = ny, then the system of Egs. (2.7) and (3.5) become overde-
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termined. Unfortunately, it is impossible to obtain an accurate
stable solution by solving the sysiem of Egs. (2.7) and (3.5)
using this technique and this is, again, probably because we
have not added any further restrictions to the solution; sce
Hadamard [6] and Ingham er al. [8]. Examples illustrating the
results obtained using this method are given in Section 4.

3.3. Minimization of Energy Method

Since the direct and the least-squares methods do not give
accurate and stable solutions for the backward heat conduction
problem (1.4)—(1.7) then another method, namely the minimiza-
tion of energy method, is introduced. In this method we do not
consider the problem (1.4)-(1.7) but rather the related problem

dular = Fulax’,
u(Q, 1 = du(h), t€ 0,7
u(l, 0y = 0, t=[0,T]
u(x, o) — g(x)[ =e, x€(0,1],

(xr, €W, 1 XO,T1]

(3.6)

where & is a preassigned small quantity. Clearly the problem
(3.6) has many solutions and the solution of the problem (1.4}-
(1.7) is included in the solution set of problem (3.6). The
difficulty now arises as how to determine the one solution from
the set of all possible solutions to the problem (3.6) in a way
which is stable.

Let H'[0, 1] and H™'[0, 11 denote the usual Sobolev spaces,
and defining a Hilbert space ® such that for any w € © we have

w € LX0, T; H'[0, 1), owlar € LXO, T, H7'[0, 1) (3.7)

whose norm is

e, ol = ( [ wtes 8 + lowe, el dr) . 33)

where |[-{, and {|l_, are the norm of the spaces H'[Q, 1] and
H'[0, 1], respectively.
‘We now consider the initial boundary value problem
Jufor = dufax?
#(0, 1) = (1)
w(l, ) = ()
ulx, 0) = {(x)

(3.9

where ¢o(f), di(t), and {(x) are given functions. It is well
known, see, for example, Treves [17], that if ¢, and ¢, € L0,
T1, for any ¢(x} & L0, 1] then there is a unique weak solution
such that u(x, 1) € @ and u{x, r) converges to {(x) as t — +{.
Hence we can define an operator
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A: 10,1} - @

(3.10
A= u(x, 1),
where u(x, £) is the weak solution of the problem (3.9). If there
is a ¢ € [0, 1] such that Ay = g(x) or ||Af]y, — 2(x)]
is sufficiently small and ¢ continuously depends on the known
function g(xj, then we may take uy(x) = ¢ as the approximate
solution on ¢ = 0 to the problem (1.4)—(1.7).
To determine the function ¢ we now introduce a minimization
scheme. This is achieved by multiplying Eq. (1.4) by «{x, #),
and on integrating by parts we obtain

10 1 )
3 fo wix, ) dx + fo L) [Bulx, T)ox|* dx dr

I au(l, 7) I (0, 7)
fou(l,z)—ax dr fuu(o,:)——ax dr (.11)

I Y L
—Efﬁu(x, 0) dx,

where the right-hand side denotes the initial inner energy of
the system and the left-hand side describes the inner energy at
time 1, the kinetic energy and absorbed (or released) thermal
energy through boih ends.

There is no rigorous mathematical argument as to what is
the best choice of the energy functional. Therefore we have
considered several different choices of J(u) and programmed
them to see which one can give the most satisfactory approxi-
mate solution to the problem; for example, we have considered

() Ju) = f;ul(x, 0 dx (3.12)
(i) Jy() = J(u)JrJ u(l, x)a"(l L
+f u(0, ) au(o D 4 (3.13)

(i) Jz(u)=J;(u2(x, 0) + |oulx, Ofox|) dx.  (3.14)

Clearly, the energy functional J(u) is the simplest functional
to take and we found that we could obtain an accurate and
stable solution using this energy functional. The energy func-
tional (3.13) appears to be more appropriate but the results
obtained when using this functional were no more accurate
than those obtained when using the energy functional (3.12).
The use of Jo(u) appears to be a better choice in that it should
be able to control high-frequency variations in the amplitude
of the function u(x). However, when implementing this tech-
nique the finite difference method has to be emploved in order
to evaluate the function du(x, 0)/dx, which appears in the energy
functional, and therefore the method may not be as accurate
as when using J(u) as the energy functional. Therefore in all
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the results presented in this paper J(i¢) has been taken as the
energy functional and we consider the constrained minimal
problem

J(u) =

me(v) (3.15)

where § = {v; v = AL € D, v — g| = &} is a closed convex
setin ®. Let K = {{; ¢ € 12, |JA{ — g =< &} then expression
(3.15) may be rewritten in the form

JAL = inf JAY) (3.16)
YEK
which on discretisation becomes
J) = J 2% dx. 3.17)

The constraint condition in Eq. (3.16) for ¥ € K may be written

IN
-,_:21, (GI,’,!G;:,,]EMJ - E[,j) (j)_,

(3.18)

Nﬂ
+2(FIUA- GIjJGmlij)g_g[I SS, l: 1,...,NT,
=1

N
and using the notation Z (GLGR'E,, — El)d, — g, = g, and
=
W, = FI, — GI,G;,' F,,; then we have
Ll =e (3.19)
The problem now reduces to finding { = ({i, &, ..., {y,) Which

satisfies the constrained minimal problem (3.17) and (3.19) and
this is solved using the NAG routine EO4UCF. This routine is
designed to minimize an arbitrary smooth function, subject to
cenain constraints which may include simple bounds on the
variables, linear constraints, and smooth nonlinear constraints
and the method is a sequential quadratic programming method;
see, for example, Fletcher [4] and Gill er al. [5].

4. NUMERICAL RESULTS

In this paper we have described three mathematical models
in order to solve the backward heat conduction problem (1.4)—
(1.7) and we now give some examples in order to illustrate the
accuracy of the methods. Further, where possible the results
are compared with the known analytical solution.

In order to illustrate the rate of convergence of the numerical
solution vsing the minimal energy technique we have investi-
gated the effect of the number of discretisations. In particular,
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ug{x}

0.2 0.4 0.6 0.8

FIG.1. The numerical solutions and the analytical solution uy{x) for Exam-
ple 1, where AA A denote the analytical solution, X X X for ¥ = 10, AN B
for N = 20, and QOO for N = 40.

the effect of the value N is illustrated in Example 1 whilst the
effect of N, and Ny is discussed in Example 2. Further, we have
also investigated the effect of the choice of the value of T, and
this is discussed in Example 1. The final example gives an
investigation of the stability of an approximate solution using
the minimal energy technique.

In all the examples presented the small control quantity &
has been chosen so as to ensure that the accuracy of the results
are not significantly improved when a smaller value is adopted.

ExampPLE 1. We first take a simple function, u(x, 1) =
sin(mx) exp(—7?), as the test function and impose the bound-
ary conditions

do() = (1) =0 (4.1)
and initially at ¢t = T, = 3 we specify
glx, ) = sin 7x exp(—nw¥4). (4.2

Solutions of the problem (1.4)—(1.7) with the boundary condi-
tions (4.1) and the final value (4.2) have been obtained with
Ny = 20, Nr = 40, and N = 10, 20, and 40, respectively.
Figure 1 shows the analytical and numerical solution using
the minimal energy technique at r = 0, where ¢ = 107, N, =
20, Ny = 40, and N = 10, 20, and 44, respectively. It is observed
that the agreement of the numerical solution as obtained by
using the minimal energy technique with the analytical solution
is excellent with the maximum relative error being approxi-
mately 2%, 1%, and 0.3% for N = 10, 20, and 40, respectively.
This result illustrates that the minimal energy approximate solu-
tion converges as the number of discretisations N increases.
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TABLE I

The Numerical Solution at ¢ = 0 for Various Values
of x for Example 1

Mesh points Least-squares Minimal energy Analytical

(x) method method solution
0.025 —384937 0.09137 0.07846
0.075 405915 0.22359 0.23345
0.125 —2490746 0.37631 0.38268
0.175 2657393 0.52090 152250
0.225 —7787272 0.64867 0.64945
0.275 8298883 0.75915 0.76041
0.325 — 15520808 0.85110 0.85204
0.375 16266417 0.92226 0.92388
0425 —21738924 0.97074 097237
0.475 22118594 0.99530 0.95692

Table 1 shows the numerical solution as obtained using the
least-squares method, the minimal energy method, and the ana-
Iytical solution at time ¢+ = O for various values of x. The
numerical solutions have been obtained with N = 40, N, =
20, and Nr = 40. It is clear that the least-squares method does
not give an accurate approximate solution. Further, the direct
method has also been used to solve this problem, but the system
of Eq. (2.7) and (3.5} are ill-conditioned. Hence no solution
has been obtained by solving the system of Eqs. (2.7) and {3.5)
directly. Table I1 shows the energy of the system at t = O with
N = 10, 20, and 40, respectively, and it is observed that the
energy of the system when using the minimal technique tends
to the analytical solution as N increases, whilst the results
obtained using the least-squares method deteriorates as the
value of N increases.

We have also investigated the effect of the value of 7. Table
Il shows the numerical solution using the minimal energy
technique with N, = 20, Ny = 40, and in order to compare the
accuracy of the numerical resuits with the same size of segment
for various value of 7, then different values of N are used,
namely: (1) N = 40 for T, = 0.25; (i) N = RO for T, = 0.5,
(iii} N = 160 for Ty = 1.0, respectively. It is found that there
is no significant difference between the accuracy obtained using
these three sets of parameters. This result confirms that the

TABLE 1I

The Solution for the Energy Function Ju) at + = 0 as a Function
of N for Example 1

Least-squares Minimal energy Analytical
N method methad value
10 7.148 % 10 0.22709 0.25
20 6.354 x 10" 0.24660 0.25
40 8.052 x 1Q% 0.24883 0.25
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value of Ty is not a very important parameter when using the
minimal energy method, We should note that the test function
rapidly tends to zero as T, increases and that obviously zero is
a solution of the minimal problem (3.17) if there is no constraint
condition. Therefore, in order to avoid this trivial solution and
to obtain an accurate approximate solution the control parame-
ter, & must be chosen to be very small. In this example it
has been found necessary to take £ = 1073, 10, and 107
for T, = 0.25, 0.5, and 1.0, respectively, and the use of
smaller valves of e, say 107%, 107%, and 1077, respectively,
do not have a significant effect on the results as presented
in Table III; hence we can conclude that the choice of values
of & is satisfactory.

ExampLE 2. We now take another simple function
u{x, 1) = 2t + x* as the test function. This has been taken so
as to test the numerical scheme when the boundary condition
on ¢ is no longer identically zero. Thus we specify

¢0(t) = 2.[,

ol =1+ 2 (4.3)

and

ulx, 1) = g(x) = 2 + x2%, (4.4)
The solutions of problem (1.4)—(1.7), subject to the conditions
(4.3) and (4.4), have been obtained with N = 40: () N, = 10
and Ny = 15, (i) N, = 20 and N, = 40; (iii)
N, = 30 and N; = 50.

Figure 2 shows the numerical solutions at 1 = 0 obtained by
using the minimal energy method, with the parameters as given
in (i), (i), and (iii) above, and the analytical solution. The
results indicate that the accuracy of the numerical solution is
very good and that the numerical solution converges as the
number of discretisations Ny and Ny increase.

TABLE IIT

The Numerical Solution at Time ¢ = 0 for Various Values
of x for Example 1

Numerical solutions

Analytical
x Ty = 0.25 =05 T, =10 solution

0.025 009137 0.09136 0.09135 0.07846
0.075 0.22359 0.22355 0.22354 0.23345
0.125 0.37631 0.37635 - 0.37632 {.38268
0175 3.52090 0.52091 0.52091 (.52250
0.225 0.64867 0.64862 0.64862 0.64945
0.275 0.75915 0.75915 0.75912 0.76041
0.325 0.85110 085114  0.85110 0.85264
0.375 0.92226 0.92227 0.92223 0.92388
0.425 0.97074 0.97073 0.97068 0.97237
0.475 0.99528 0.99526 0.99522 0.99692
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FIG. 2. ‘The numerical solutions using the minimal energy method and
the analytical solution at ¢ = 0 for Example 2, where AA A is the analytical
solution, X X X for N = 10, MMM for N, = 20, and OQO for N, = 30.

These two examples have illustrated that numerical solutions
of the problem (3.6) using the minimal energy technique are
convergent as the number of discretisations increase. However,
as we mentioned in the Introduction, the backward heat conduc-
tion problem is an improperly posed problem. Therefore, it is
necessary to consider the stability of the numerical solution by
the minimal energy technique. We again take the test function
to be that as given in Example 2 but add a small perturbation
£(x) onto the known solution at a given value of T, ie., to
the function g(x), to see how large an error will be generated
by this small perturbation in the initial data.

ExampLE 3. We take the boundary conditions as
Gy =2 ) =1+ 2 {4.5)
and the value at f = 1 as
u(x, 1) = glx) = 2 + x* + g(x), (4.6)
where
£(x) = sin{knx) exp(—k*n?) 4.7

and £ is a constant which we will prescribe a value. It is clear
that when k is sufficiently large then the absolute maximum
value of the perturbation term g(x) is very small. For example,
if we take k = 3, then max{g(x)| < 107%, On the other hand,

wlx, ) = 2t + x¥ + sinlkwx) exp(~kiny) (4.8)
is one of the solutions of the problem (3.6), and at r = 0 the

value of the term which has arisen from the perturbation is
always of the order of unity in the solution (4.8); ie., the



SOLUTION OF THE BACKWARD HEAT CONDUCTION EQUATION

TABLE IV

The Numerical Solutions at 7 = 0 for Various Values of k Using
the Minimat Energy Method and the Solution (4.8) for Example 3

Numerical solutions Solution (4.8)

X k=10 k=1 k=3 k=0 k=1 k=3
0.025 0.00062 0.08128 (.00062 0.00062 0.07908 0.23407
0.125 0.01548 0.39180 0.01548 0.01562 0.39831 0.93950
0.225 0.05051 0.69918 0.05051 0.05062  0.70007 0.90327
0.325 0.10528 0.95638 0.10528 0.10562 0.95827 0.18408
0.425 018041 105115 0.18041 0.18062 1.15299 057978
0.525 (.27493  1.27023 0.27493 027562 1.27254 —0.69675
0.625 0,39059  1.31292 039059 0.39062  1.31450 0.60794
0.725 (.52551 1.28476 0.52551 0.52562  1.28603 1.04812
(.825 0.68052 1.20151 0.68052 0.68062 1.20312 167674
0925 0.85519 1.07882 0Q.85519 0.83562  1.08907 1.50507

perturbed solution is as large as the unperturbed solution at
t = Q. Therefore, the solution set of the problem (3.6) includes
seme solutions which are not continucusly dependent on the
initial data and this backward heat conduction problem is im-
properly posed.

Table IV illustrate the numerical solution at 1 = 0 for various
values of x and for k = 0, 1, and 3, respectively. 1t is found
that the relative error between the two sets of solutions for
k= 0 and 3 is less than 107", This result, when compared with
the sclution (3.7) for k = 3, gives a relatively large percentage
error. However, the resulis obtained using the minimal energy
technique are all within the accuracy of the numerical scheme
and clearly the minimal energy method gives a stable approxi-
mate solution, since a small perturbation in the input data on
t = T, results in a very small change in the numerical solution.

5. CONCLUSIONS

The boundary element method has been modified by a mini-
mal energy technique in order to investigate the backward heat
conduction problem which is an improperly posed problem. [t
has been found that the minimal energy technique always gives
an accurate, convergent, and stable solution with an increasing,
accuracy as the number of discretisations increase. However,
the direct and the least-squares methods did not produce accu-
1ate solutions to the problem and this is probably because no
restrictions on the solution have been enforced and Hadamard
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[6] affirmed that one has to add some restrictions in order to
obtain a solution to improperly posed problems.

It is important to observe when the minimization problem
is employed that a good initial guess is not important and in
all the examples presented in this paper the initial guess for all
of the variables was set to be either 0 or 1. Further, Example
3 is a very severe test of the robustness of the minimal energy
technique and the results obtained for this problem are most en-
couraging.

Finally, it should be noted that the matrix W in condition
(3.19) 1s a full matrix and, therefore, a large amount of computer
storage is required when the final time, 7y, is large or in the
application of the method to higher dimensions. In order to
reduce this large storage requirement then an alternative method
which uses a time-marching scheme may be appropriate. Such
a scheme is at present being investigated.
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